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Modern (deep) learning

Deep learning holds most state-of-the-arts in various tasks :
* |mage recognition, object detection, colorization, pixelization

* Music classification, generation, text-to-speech synthesis

* Language translation, data analysis
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However deep learning suffers from several problems

o Neural Architecture Search

* Networks can have up to billions of parameters E w
* Extremely demanding in computation, energy and memory ;Q
* @Gainsin accuracy now appear always linked to increased size
o 2013 2014 2015 Yearzmé 2017 2018 2019

Dario Amodei and Danny Hernandez. Al and compute, 2018. Blog post.



Modern issues - Consequences

Direct consequences of this accuracy race :

* Models are overparameterized and heavy computationally
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* Huge environmental issue

\

* Precludes the use in non-specialized (user-side) hardware

* Even less possible for embedded systems

Example of GPT-3 model (NLP)

. 175 billon parameters and take 355 years on a single GPU to train

. Carbon footprint for training equivalent to driving to the moon and back



Deep learning - Architectures
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Fully-connected neural network

* More complex architectures : CNN, RNN, LSTM



Generative models for Audio

Generative models are a flourishing class of deep learning approaches

* Deal to generate novel data based on existing examples [ Control J

QCPC)

Neural
generator
Plurality of architectures :
* Auto-Regressive: Heavy architectures, no direct control ?
* VAE: low-dimensional representation, blurry generation
N
* GAN: lack latent expressivity, difficult to optimize
* Normalizing Flows: complex distributions, no input reduction How to
evaluate/compare

them?



Evaluation of models

Among the 28 surveyed papers (2016-2020) :

Number of papers (%)
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Most of used metrics are on “quality” either than “performance”
No real energy-based criterion

Best trade-off : quality or energy efficiency?

MOS Mean Opinion Score
LL Log-Likelihood

Rec. Reconstruction

Acc. Accuracy
IS Inception Score

Gen. speed
Param.
Train. speed
Size

Gflops

Generation speed
Number of parameters
Training speed
Memory size

Gigaflops




Pareto efficiency - Theory

Optimization problems involving conflicting objectives to be optimized simultaneously :

min(f1(z), f2(2), ..., fu(z))

reX

Let {zq,2p} € X X X. X4 issaid to dominate Tp (Tq < Xp ) ,if :

*Vi € {19 c '7k}afi(xa> S fz(xb)
.Elj S {17‘ : '7k}7fj($a) < fj(xb)

A solution ™ € X s a Pareto optimal point and f(z™) is a Pareto optimal
objective vector if there does not exist £ such that ¢ < *

The set of all these pareto optimal solution is called the Pareto front :

fa

minimize f, fo



Pareto efficiency - Application

Energy efficiency of transportation modes according to the distance

1/Distance

Energy



Pareto efficiency - Application

Energy efficiency of transportation modes according to the distance
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Pareto efficiency - Application

Energy efficiency of transportation modes according to the distance

1/Distance

C-S. Sheih, Bi-objective optimization of distance and energy. Spring 2013 Energy



EXPERIMENTS & RESULTS




Training cost

e Training Time : depends on the model’s implementation number & performance of GPU
* Electricity usage : still hardware - dependent but location- agnostic

e Carbon Emissions : real carbon footprint impact local electricity infrastructure

Carbon emissions estimation (in kgC0,eq) per training can be expressed as :

COgse = a XN X Prae Xt
Lacoste et al. 2019. Quantifying the Carbon Emissions of Machine Learning
Q¢ Electricity emission factor (kgC0O,eq/kWh)
. Number of GPUs
Pmax Maximum Power of the GPU (kWatt)
t Training time (Hours)



Training cost

e Training Time : depends on the model’s implementation number & performance of GPU

Consumption CO2e (Ibs)
L. . . . Air travel, 1 passenger, NY+SF 1984
* Electricity usage : still hardware - dependent but location- agnostic Human i, avs, 1 yar 11023
American life, avg, 1 year ,1
. . . . .. . Car, avg incl. fuef 1 liyfetime 126,000
e Carbon Emissions : real carbon footprint impact local electricity infrastructure
Training one model (GPU)
NLP pipeline (parsing, SRL) 39
L. . . . L. w/ tuning & experimentation 78,468
Carbon emissions estimation (ln kgCOzeq) per tralnlng can be expressed as . Transformer (big) 192
,,,,,,,,,,,,,,,,,,,,,,,,,, w/ neural architecture search 626,155
4 7 COQe — Of >< TL >< pma/x >< t Table 1: Estimated CO4 emissions from training com-
L . ¥ i Lacoste et al. 2019. Quantifying the Carbon Emissions of Machine Learning mon NLP models, compared to familiar consumption.
| % e o o Strubell et al. 2019. Energy and Policy
X ¢ Electricity emission factor (kgCOzeq/kWh) Considerations for Deep Learning in NLP
)k R . Number of GPUs
" Pmaxz Maximum Power of the GPU (kWatt)
t Training time (Hours) Model Hardware Pmaz T COse
- == 5 SampleRNN GTX TITAN X 0.25 168 18.4
https://www.electricitymap.org/map SING 4 NVIDIA P100 1 52 29.7
WaveGAN NVIDIA P100 0.25 96 10.5
We took a = 0,437 kgCOgeq/kWh (2018 global average) GANSynth NVIDIA V100 0.3 108 15.45
FloWaveNet NVIDIA V100 0.3 272 35.7




Inference cost

* Elapsed real time (sample/sec) : Other jobs running on the same device, number of cores
* Number of Floating Points Operations (FPOs) : location - independent but not straightforward

* Number of Parameters : Correlated with computational complexity different operations costs
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Inference cost

* Elapsed real time (sample/sec) : Other jobs running on the same device, number of cores
* Number of Floating Points Operations (FPOs) : location - independent but not straightforward

* Number of Parameters : Correlated with computational complexity different operations costs

Model Number of parameters
SampleRNN 52M

SING 64M
WaveGAN 89M
GANSynth 15M
FloWaveNet 183M

PyTorch : sum(p.numel() for p in model.parameters())
Tensorflow & Keras : model.summary ()



Quality score

Generation quality measurements are plural:

The goal is to maximize this ratio, and thus to minimize 1 — %MOS

We rely on the MOS as it is the most popular measure

This score is highly dependent on each experimental setup

We compute :

7oMOS =

MOSModel

MOSGroundThruth

METHODS | 5-sCALE MOS

Model

Ground Truth

‘Wavenet
SING

Model MOSModel MOSGroundTruth 1—%MOS
SampleRNN - - -
SING 2,8+ 0,24 3,86 + 0,24 0,26
WaveGAN 2,3+0,9 3,9+0,9 0,41
GANSynth - - -
FloWaveNet 3,95 +0,15 4,67+ 0,08 0,15

GROUND TRUTH 4.67+0.076
MoOL WAVENET 4.30+0.110
GAUSSIAN WAVENET | 4.46+ 0.100
GAUSSIAN IAF 3.75£0.159
FLOWAVENET 3.95+0.154
MOS
386+ 024 Experiment | Quality
2.85+0.24 Real (train)
3.55+0.23 Real (test) 3.9+0.8
Parametric
WaveGAN
+ Phase shufflen =2 | 2.3+0.9

+ Phase shuffle n = 4



Results

Training cost
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nference cost
fo = Number of parameters
t );‘. FloWaveNet
. WaveGAN
N SING X
h. 4
>
fi=1—%MOS

Quality score



CONCLUSIONS & PERSPECTIVES




Conclusions

 The lack of training details affected our work : authors must report the training time & hardware or use

online tool! to report actual CO,
* Models that are sub-optimal should be discredited from publications

* QOur approach is generic, and could be applied to any type of model or input data

Perspectives

* Automatic implementation to count FPOs
* Exhibit a training/inference ratio

e Run experiments in another field of Al

Lhttps://mlco2.github.io/impact/
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