

A MULTI-OBJECTIVE APPROACH FOR SUSTAINABLE DEEP LEARNING

SIF 2021

Constance Douwes¹ and Philippe Esling¹

¹ IRCAM CNRS – UMR 9912, 1 Place Igor Stravinsky, F-75004 Paris, France

douwes@ircam.fr

Artificial Intelligence

Modern (deep) learning

Deep learning holds most state-of-the-arts in various tasks:

- Image recognition, object detection, colorization, pixelization
- Music classification, generation, text-to-speech synthesis
- Language translation, data analysis

However deep learning suffers from several problems

- Networks can have up to billions of parameters
- Extremely demanding in computation, energy and memory
- Gains in accuracy now appear always linked to increased size

Dario Amodei and Danny Hernandez. Al and compute, 2018. Blog post.

Modern issues - Consequences

Direct consequences of this accuracy race:

- Models are overparameterized and heavy computationally
- Huge environmental issue
- Precludes the use in *non-specialized* (user-side) hardware
- Even less possible for embedded systems

Example of GPT-3 model (NLP)

- 175 billon parameters and take 355 years on a single GPU to train
- Carbon footprint for training equivalent to driving to the moon and back

Deep learning - Architectures

Fully-connected neural network

More complex architectures : CNN, RNN, LSTM

Generative models for Audio

Generative models are a flourishing class of deep learning approaches

Deal to generate novel data based on existing examples

Plurality of architectures:

- Auto-Regressive: Heavy architectures, no direct control
- VAE: low-dimensional representation, blurry generation
- GAN: lack latent expressivity, difficult to optimize
- Normalizing Flows: complex distributions, no input reduction

How to evaluate/compare them?

Evaluation of models

Among the 28 surveyed papers (2016-2020):

MOS Mean Opinion Score

LL Log-Likelihood

Rec. Reconstruction

Acc. Accuracy

IS Inception Score

Gen. speed Generation speed

Param. Number of parameters

Train. speed Training speed

Size Memory size

Gflops Gigaflops

- Most of used metrics are on "quality" either than "performance"
- No real energy-based criterion
- Best *trade-off* : quality or energy efficiency?

Pareto efficiency - Theory

Optimization problems involving conflicting objectives to be optimized simultaneously:

$$\min_{x \in X} (f_1(x), f_2(x), \dots, f_k(x))$$

Let $\{x_a, x_b\} \in X \times X$. x_a is said to dominate x_b ($x_a \prec x_b$), if :

- $\forall i \in \{1,\ldots,k\}, f_i(x_a) \leq f_i(x_b)$
- $\bullet \exists j \in \{1, \dots, k\}, f_j(x_a) < f_j(x_b)$

A solution $x^* \in X$ is a Pareto optimal point and $f(x^*)$ is a Pareto optimal objective vector if there does not exist \hat{x} such that $\hat{x} \prec x^*$.

The set of all these pareto optimal solution is called the Pareto front:

Pareto efficiency - Application

Energy efficiency of transportation modes according to the distance

Pareto efficiency - Application

Energy efficiency of transportation modes according to the distance

Pareto efficiency - Application

Energy efficiency of transportation modes according to the distance

EXPERIMENTS & RESULTS

Training cost

- Training Time: depends on the model's implementation number & performance of GPU
- Electricity usage : still hardware dependent but location- agnostic
- Carbon Emissions: real carbon footprint impact local electricity infrastructure

Carbon emissions estimation (in kgCO₂eq) per training can be expressed as :

$$CO_2e = \alpha \times n \times p_{max} \times t$$

Lacoste et al. 2019. Quantifying the Carbon Emissions of Machine Learning

- α Electricity emission factor (kgC0₂eq/kWh)
- n Number of GPUs
- p_{max} Maximum Power of the GPU (kWatt)
 - t Training time (Hours)

Training cost

- Training Time: depends on the model's implementation number & performance of GPU
- Electricity usage : still hardware dependent but location- agnostic
- Carbon Emissions: real carbon footprint impact local electricity infrastructure

Carbon emissions estimation (in kgCO₂eq) per training can be expressed as :

https://www.electricitymap.org/map

$$CO_2e = \alpha \times n \times p_{max} \times t$$

Lacoste et al. 2019. Quantifying the Carbon Emissions of Machine Learning

- α Electricity emission factor (kgCO₂eq/kWh)
- n Number of GPUs

Maximum Power of the GPU (kWatt)

t Training time (Hours)

We took $\alpha = 0,437 \, \, \mathrm{kgCO_2eq/kWh}$ (2018 global average)

Consumption	CO ₂ e (lbs)
Air travel, 1 passenger, NY↔SF	1984
Human life, avg, 1 year	11,023
American life, avg, 1 year	36,156
Car, avg incl. fuel, 1 lifetime	126,000
Training one model (GPU)	
NLP pipeline (parsing, SRL)	39
NLP pipeline (parsing, SRL) w/ tuning & experimentation	39 78,468

Table 1: Estimated CO₂ emissions from training common NLP models, compared to familiar consumption.¹

Strubell et al. 2019. Energy and Policy Considerations for Deep Learning in NLP

Model	Hardware	p_{max}	t	CO_2e
SampleRNN	GTX TITAN X	0.25	168	18.4
SING	4 NVIDIA P100	1	52	22.7
WaveGAN	NVIDIA P100	0.25	96	10.5
GANSynth	NVIDIA V100	0.3	108	15.45
FloWaveNet	NVIDIA V100	0.3	272	35.7

Inference cost

- Elapsed real time (sample/sec): Other jobs running on the same device, number of cores
- Number of Floating Points Operations (FPOs): location independent but not straightforward
- Number of Parameters : Correlated with computational complexity different operations costs

Inference cost

- Elapsed real time (sample/sec) : Other jobs running on the same device, number of cores
- Number of Floating Points Operations (FPOs): location independent but not straightforward
- Number of Parameters : Correlated with computational complexity different operations costs

Model	Number of parameters
SampleRNN	52M
SING	64M
WaveGAN	89M
GANSynth	$15\mathrm{M}$
FloWaveNet	183M

PyTorch : sum(p.numel() for p in model.parameters())
Tensorflow & Keras : model.summary()

Quality score

Generation quality measurements are plural:

- We rely on the MOS as it is the most popular measure
- This score is highly dependent on each experimental setup

• We compute :
$$\% \mathrm{MOS} = \frac{\mathrm{MOS}_{Model}}{\mathrm{MOS}_{GroundThruth}}$$

The goal is to maximize this ratio, and thus to minimize 1-% MOS

Model	MOS_{Model}	$MOS_{GroundTruth}$	1-%MOS
SampleRNN	-	-	_
SING	$2,8 \pm 0,24$	$3,86 \pm 0,24$	0,26
WaveGAN	$2,3 \pm 0,9$	$3,9 \pm 0,9$	0,41
GANSynth	-	-	-
FloWaveNet	$3,95 \pm 0,15$	$4,67 \pm 0,08$	$0,\!15$

METHODS	5-SCALE MOS
GROUND TRUTH MOL WAVENET GAUSSIAN WAVENET GAUSSIAN IAF FLOWAVENET	4.67 ± 0.076 4.30 ± 0.110 4.46 ± 0.100 3.75 ± 0.159 3.95 ± 0.154

Model	MOS
Ground Truth	3.86 ± 0.24
Wavenet	2.85 ± 0.24
SING	3.55 ± 0.23

Experiment	Quality
Real (train) Real (test) Parametric	3.9 ± 0.8
	$\boxed{2.3\pm0.9}$

Results

Training cost

Results

CONCLUSIONS & PERSPECTIVES

Conclusions

- The lack of training details affected our work : authors must report the training time & hardware or use online tool 1 to report actual CO_2
- Models that are sub-optimal should be discredited from publications
- Our approach is generic, and could be applied to any type of model or input data

Perspectives

- Automatic implementation to count FPOs
- Exhibit a training/inference ratio
- Run experiments in another field of AI

THANKS!