

From the embodied emissions of radio base stations to involving the user in environmental-aware clouds

• Now: PhD thesis at SEPIA team IRIT (Toulouse)

• Supervisors: Georges DA COSTA and Jean-Marc PIERSON

Part1: Master's thesis

Parameterized Embodied Emissions Calculator (**PEEC**) for telecommunication networks equipment

• Base station = 1G / 2G / 3G / 4G / 5G

4

Embodied emissions = "cradle-to-gate" emissions

Results: **PEEC**, a streamlined tool

• Simplified LCA, to be used by different users

PEEC - Parame	eterized Embodi	ed Emission Calculato	r for tel	ecom net	work	(equip	oment	Т	otal embodie	ed emissio	ns: 1	175 kg CC)2eq
Module assessed:	Indoor cabinet	RBS 6201											
Instructions Enter the informations a Emission factors for the drop-down menu. A cust other tabs of this workbo	Disclaimer The results given by this tool are only estimations of the carbon footprint of the module. They should not be used for comparison with other LCA unless all assumptions and modelling choices are equal.				IMPACT DISTRIBUTION AMONG LIFE CYCLE STAGE								
	INPUTS Estima			ted carbon footprint (kgCO2eq)									
	Hardware specs	Raw materials	Production			uction						_	
	quantity unit	Emission factor	Result	Emissio	n facto	or	Result						
Electronics	kg	Custom - 34,15							389	309		245	
PWB area	m2			PCB combined	- 2		0,00						
PWB layers	#												
IC area	cm2			IC]-		0,00						
Standard comp	kg			Standard comp	- 3		0,00						
Electromech	2,61 kg	Fan 6201 - 12,28	32,05	Fan unit	-	9,25	24,14	0	200 40	0 600	800	1000 12	00 1400
Mechanical parts	80,20 kg	Cabinet 6201 - 3,46 277,79						Climate change potential (kgCO2eq)					
Die casted Alu	1,72 kg			Die casting	- 1	3,53	23,27		Raw materi	Production	■ Transport	Ericsson sup	oort
Other mech	78,48 kg			Other mechanic	-	2,02	158,29		Adw materi	ar Production	I transport	Elicsson sup	JOIL
Cable sets	5,40 kg	Power cable - 7,21	38,92	Cables	-	0,84	4,52		FRICCON				
On-board power	kg	NA - 0,00	0,00	MA		0,00	0,00		ERICSSON		ACTVSS	SUPPLY CF	IAIN
On-board battery	kg	NA - 0,0	0,00	MA	-	0,00	0,00						
TOTAL	88,21 kg		348,76				210,22					Friesson	impact
(with packaging)	101,44 kg											225	6
Special hi	ghlights	Packaging				1,51	39,96						
Trspt to customer		Transport suppliers to as	sembly	Distance mtd	-	NA	33,77				-		
Sea	3500 km	Transport to customer		Avg 2014	-	1,96	198,78						
Air	2500 km	Assembly		2014	-	0,97	98,37						
Road	1000 km	Ericsson factories				0,16	16,39		Supply chain				
Train	km	Outsourced factories				0,81	81,97		78%				
Alu impact factor	defined at	Ericsson support activitie	s	2014	-	2,42	245,41						
Gold impact factor	product level												

- (embodied = 10-15% emissions over the full life cycle of a BS)
- 5G: coming soon...

Main takeaway of my Master's thesis

• Significant uncertainties = challenge in life cycle assessment

- No data to test against, instead:
 - Comparison with literature / standards
 - Transparently reported method
 - Systematic discussion about source of uncertainty
 - Sensitivity analysis
- Interest and risk of simplified tools like PEEC
- Sustainability action in tech companies

Part2: PhD topic

Involving the user in environmental-aware clouds

Starting point of my PhD

Hilty, L.M., Aebischer, B., 2015. Ict for sustainability: An emerging research field, in: ICT Innovations for Sustainability. Springer, pp. 3–36.

9

Technical leverages for footprint reduction available for data center operators

Energy efficiency

- Workload consolidation and shut-down techniques
- Virtualization: packing several virtual machines on the same hardware
- Dynamic Voltage and Frequency Scaling (DVFS)
- Heterogeneous computing: power- and thermal-aware scheduling
- Use of renewable energies
 - Workload adaptation to power envelope
 - Geographic load shifting
- Data center environment
 - Cooling management, waste heat utilization
 - Batteries (UPS, fuel cells, ...)

Usual objectives

- Maximize performance under energy/CO2 constraints
- Minimize energy/CO2 under performance constraints

(performance = throughput, makespan, response time, SLA violation, ...)

Being transparent to the user = rebound effects?

Including the user

- Answer to the demand from users for green services
 - Why? Legal obligations for companies / sustainability-concerned citizens
 - **How?** Users **pay** for green warranty (pricing / green Service Level Agreement)
- Enable new leverages for footprint reduction
 - Which? Accept delay, degradation, less availability
 - Temporal flexibility: "I accept to delay the execution of my task"
 - Spatial flexibility: "I accept to lower the resources granted to my task"
 - How? Users rewarded for their flexibility (pricing / eco-label)

=> Opportunity to counteract rebound effect

One example: tuning the size of VMs

David Guyon et al., 2019. Involving users in energy conservation: a case study in scientific clouds.

Figure 6 Energy consumption and execution time of each workflow in each execution mode.

- Model: IaaS cloud, HPC jobs, consolidation and shut-off techniques
- User choice: reduce the size of her VM (big/medium/small)
- Results: 50% gain by only allowing consolidation and shutdown, even better (up to 60-65%) the more users choose a small/medium VM size

14

Going further

• Limitation of reviewed literature

- Simplistic distribution of user requirements
 - Uniformly distributed / fixed pattern => more realistic user model?
 - User requirements likely to evolve with time
- Unclear how certain approaches can have an overall positive impact on the environment

Going further

- Study more "extreme" involvement of user
- Combine user as flexibility and user calling for more sustainability
- Mechanisms for sufficiency
- Include an LCA dimension?

Conclusion

- Thanks for your attention!
- Master's thesis: estimation of radio base station's embodied carbon emissions
 - new and active research field
 - uncertainties
- PhD thesis: involving the user in environmental-aware clouds
 - avoid rebound effect
 - I plan to look into highly committed solutions
- Do not hesitate for questions :-) : mael.madon@irit.fr

References

Master's thesis:

JISIL

• M. Madon, Developing a Parameterized Embodied Emissions Calculator for telecommunication networks equipment (PEEC), Master's thesis, KTH Royal Institute of Technology, Stockholm, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-292198

Literature user- and environmental-aware data centers:

- Guyon, D., Orgerie, A.-C., Morin, C., Agarwal, D., 2019. *Involving users in energy conservation: a case study in scientific clouds*. International Journal of Grid and Utility Computing 10, 272–282. https://doi.org/10.1504/IJGUC.2019.099667
- Orgerie, A., Lefèvre, L., Gelas, J., 2008. Save Watts in Your Grid: Green Strategies for Energy-Aware Framework in Large Scale Distributed Systems, in: 2008 14th IEEE International Conference on Parallel and Distributed Systems. Presented at the 2008 14th IEEE International Conference on Parallel and Distributed Systems, pp. 171–178. https://doi.org/10.1109/ICPADS.2008.97
- Haque, Md.E., Le, K., Goiri, Í., Bianchini, R., Nguyen, T.D., 2013. *Providing green SLAs in High Performance Computing clouds*, in: 2013 International Green Computing Conference Proceedings. Presented at the 2013 International Green Computing Conference Proceedings, pp. 1–11. https://doi.org/10.1109/IGCC.2013.6604503
- Amokrane, A., Langar, R., Zhani, M.F., Boutaba, R., Pujolle, G., 2015. Greenslater: On Satisfying Green SLAs in Distributed Clouds. IEEE Transactions on Network and Service Management 12, 363–376. https://doi.org/10.1109/TNSM.2015.2440423
- Basmadjian, R., Botero, J.F., Giuliani, G., Hesselbach, X., Klingert, S., De Meer, H., 2018. Making Data Centers Fit for Demand Response: Introducing GreenSDA and GreenSLA Contracts. IEEE Transactions on Smart Grid 9, 3453–3464. https://doi.org/10.1109/TSG.2016.2632526

Guyon, D., Orgerie, A.-C., Morin, C., 2018. *Energy - Efficient IaaS-PaaS Co-Design for Flexible Cloud Deployment of Scientific Applications*, in: 2018 30th International Symposium on Computer Architecture and High Performance Computing (SBAC-PAD). pp. 69–76https://doi.org/10.1109/CAHPC.2018.8645888

ANNEX

Method: streamlining LCA

Life Cycle Assessment (LCA)

LCA data and tools

Previous LCA for telecom

LCA experts

LCA standards

User expectations

Workshop on usability

Discussion with stakeholders

11 customer requests

Literature on simplified LCA

19

Similar work

PAIA (MIT and Quantis)

iNEMI Eco-Impact Estimator

ŤRIT

Fig. 38. Conceptual model for sustainable cloud computing.

21

Source: Gill, S.S., Buyya, R., 2018. A Taxonomy and Future Directions for Sustainable Cloud Computing: 360 Degree View.

Static distribution of power purchase agreement?

22

Source: Haque et al. 2013

Less violations by rejecting more SLAs?

23

Source: Haque et al. 2013

• Rejected / dissatisfied user: where will she run her tasks?

Limited results

Source: Orgerie et al. 2008

24