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Depuis plusieurs années, les recherches en Intelligence Artificielle (IA), et plus particulièrement sur les réseaux de
neurones, ont permis des avancées remarquables dans un grand nombre de domaine. Ce n’est pas sans conséquence
sur le coût computationnel, qui n’a cessé de croître et atteint aujourd’hui des niveaux non négligeables. Au coeur de ce
problème, vient notre manière d’évaluer et de mesurer leur performance : actuellement, les chercheurs se concentrent
sur l’amélioration de la qualité des résultats générés, occultant ainsi le coût de calcul et l’impact environnemental de
ces nouvelles technologies.

Nous introduisons ici l’emploi d’une mesure multi-objective permettant d’évaluer simultanément la qualité des modèles
et leur efficacité énergétique. En appliquant cette mesure à plusieurs modèles de l’état de l’art en generation audio, nous
montrons qu’elle change radicalement notre manière de juger les modèles, encourageant des techniques d’entrainement
plus "verts" ainsi qu’une allocation plus optimales des ressources. Nous espérons que ce type de mesure sera largement
adopté au sein de cette comunnauté, afin de mettre les coûts de calcul et les émissions de carbone sous les projecteurs
de la recherche en apprentissage profond.
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1 Context
Between 2012 and 2018, the amount of computation used in deep learning grew by a factor of 300,000
[1]. This exponential growth might have permitted to achieve impressive results across a wide variety of
tasks, but it also strongly increased the demand for energy production, responsible for approximately 35%
of total greenhouse gas emissions in 2010. If this trend continues, it is fairly logical to predict that deep
learning will be a significant contributor to climate change. Moreover, research institutes and individuals
can lack sufficient resources, due to the demand of countless types of specialized hardware (GPUs, TPUs),
often running continuously for several days and even up to weeks. Hence, obtaining a quality similar to
state-of-the-art models is becoming an unattainable goal, both financially and ecologically [9].

Generally speaking, the absence of energy-based criteria for generative models falls within the broader
lack of suitable evaluation methods, notably for assessing the quality of the generated content [10]. In
this study, we propose a new method to evaluate both accuracy and energy efficiency of deep generative
models, and focus on raw audio synthesis. This task is a major challenge given that audio signals have
strong temporal dependencies, composed of complex structures at both local and global scales. Most of
the recent advances produced by deep approaches rely on a significant increase in terms of both size and
complexity [5], as well as an ever-growing number of training examples.

In this study, we first present estimations of training costs in terms of CO2 emissions for all state-of-the-
art models we had enough training details among the twenty-five studied ones: SampleRNN [8], SING [2],
WaveGAN [3], GANSynth [4] and FloWaveNet [6]. We then propose the use of a multi-objective Pareto
criterion to provide fair comparisons regarding both accuracy and energy efficiency when publishing new
models. We compute a subjective score for accuracy, and present two Pareto fronts, one for the training
based on our CO2 estimation, and one for the inference based on the number of parameters.
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2 Methodology
First, we estimate carbon emissions of each of the five original papers’ training procedures. Since we do
not have all of the specific hardware they used, we make the assumption of the worst-case scenario and take
the maximum power consumption pmax for each of the GPUs according to their technical specifications, as
does the "Machine Learning Impact Calculator" [7]. We then multiply it by g, the number of GPUs used
for training and by t in hours, to get the kilo-Watt hours consumption. As carbon emissions are location-
dependent, we took a carbon intensity factor of 0.437 kgCO2eq/kWh as it is the global yearly average of
2018† to convert kilowatt-hours to carbon emissions. We ended up with the following formula to estimate
the carbon emission (CO2e) of a whole training as CO2e = 0,437×gpmax × t.

Increasing the size of a model and the number of training examples generally increases its accuracy, but
also the energetic cost of its training. As these objectives are clearly conflicting, our idea is to rely on Pareto
optimality, in order to evaluate a model according to both its accuracy and its environmental impact. Given
two different models A and B with the same accuracy, if A is more energy-efficient than B, A is said to
dominate B. If there is no better solution than A, it is Pareto optimal. Hence, we aim to find the set of all
Pareto optimal models to form a Pareto front and remove non-optimal models.

As discussed earlier, measuring the accuracy of generative models is a daunting task. Here, we rely on
the Mean Opinion Score (MOS) to illustrate our multi-objective proposal, as it is the most popular measure
among our surveyed papers. As this score is highly dependent on each experimental setup, we compute
%MOS = MOSM

MOSGT
to allow more accurate comparisons, where MOSM and MOSGT stands respectively for

the MOS obtained by the model and the one obtained by the respective "ground truth" from each original
paper. The higher the perceived quality of the sound produced by the model, the closer this ratio will be to
1, and conversely the lower the perceived quality, the closer it will be to 0. The goal is to maximize this
ratio, and thus to minimize 1−%MOS. We consider this last measure as our subjective accuracy score.

For the energy-efficiency score, we separate training from inference. Regarding training, we take the
previously introduced measure of energy consumption. Regarding inference, we rely on the number of pa-
rameters of the models. This count is highly correlated to the computational complexity and is independent
of the device used to perform inference.

We display in Figure 1 the multi-objective space, where we plot the Pareto front for training (left) and
for inference (right). The three models FloWaveNet, SING and WaveGAN are Pareto optimal in training,
whereas WaveGAN is dominated by SING in inference and, therefore, is sub-optimal.

Since our goal is to propose a new tool for sustainable evaluation of models, we did not re-train the
models to make our work more consistent and greener. Therefore, we would like to clarify that we rely
on approximations and hand-crafted measures; these figures support our overall approach, but it warrants
more extensive and reliable analyses, with a larger array of models. However, it should be noted that our
approach is generic, and could be applied to any type of model or input data.

Figure 1. Representation of two Pareto Fronts (dotted lines). The objective is to minimize the subjective
score (1−%MOS) along with the energy efficiency of either the training (left) with the measure of the
carbon emission (CO2e) per training, or the inference (right) with the number of parameters.

† https://www.carbonfootprint.com
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